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A model for one-phonon thermal desorption is presented in which the structure 
of the substrate phonons, expressed as a projection on a surface atom of the 
phonon density of states, appears as a separate factor in the angle- and 
energy-resolved desorption rate. Desorption from both localized, and delocal- 
ized initial adatom states is considered. Under certain circumstances one can 
obtain the cosine-distribution of the equilibrium theory, but in general, the 
desorption flux from delocalized states deviates from the cosine law by being 
peaked away from the surface normal, whereas for localized initial state-g, the 
flux is concentrated more in the normal direction. 
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1. Introduction 

Quantum chemistry at solid surfaces has developed into a major scientific activity 
in the 31 years since Jaroslav Kouteck~)'s pioneering paper [1] appeared in 1956, 
when there were probably no more than five theoreticians active in the field. As 
in chemistry generally, our ability to deal theoretically with dynamical processes 
at surfaces lags behind that for structural problems. In particular, process dynamics 
at solid surfaces presents some severe difficulties, and even some fundamental 
questions [2]. Nevertheless, the theory of phonon-driven adsorption and desorp- 
tion of atoms has a far longer history than structural quantum chemistry at solid 
surfaces; it goes back more than 50 years [3] to a series of papers by Lennard- 
Jones, Devonshire, and Strachan (LJDS) in which however, essentially only a 
one-dimensional theory was constructed. A fully three-dimensional theory of 
desorption from localized states was constructed by Bendow and Ying [4], and 
computations were made for an adatom-phonon interaction derived from a 
gas-solid interaction potential which was a pairwise sum of Morse potentials, 

* Dedicated to Professor J. Kouteck~ on the occasion of his 65th birthday 
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using a bulk Debye model for the substrate phonons. The final-state continuum 
wavefunctions describing the desorbed atom were approximated by WKB 
wavefunctions for a flat potential, whereas the initial localized states were 
described by Gaussian wavefunctions. There are therefore inconsistencies, and 
unknown errors here. Evenso, Bendow and Ying made important contributions, 
and presented some details of the angle- and energy-resolved desorption flux 
computed for the one-phonon process. 

Recent developments [5-11], among which the work of Kreuzer and Gortel, and 
their coworkers is prominent, include (a) exact evaluation of the matrix elements 
of  the adatom-phonon coupling, (b) use of  a master equation with one- or even 
multi-phonon cascading in the bound states, (c) more realistic treatment of the 
substrate phonons by drawing on Ezawa's [12] work on the phonons of  a 
semi-infinite continuous solid. In addition, there have been papers, Ref. [13] for 
example, on the general theory of rate processes in condensed media which, 
although not designed for thermal desorption, could be adapted to this problem. 
With one exception [5, 14], the angle-resolved desorption spectrum could have 
been addressed in these papers, but in fact it was only mentioned once [6]. 

The present paper is concerned in a particular way with the angle-resolved 
desorption flux. In general, the angular distribution will depend in a complicated 
way on the phonon structure of the substrate, and the gas atom states in the static 
gas-solid potential. However, for correlating or interpreting experimental data, 
it could be useful to have a theoretical model where the r~le of the substrate 
phonons is differentiated from other factors. I describe such a model here. To 
achieve the required differentiation, the most important move is to simplify the 
atom-phonon coupling; the substrate phonons themselves can be described as 
accurately as one wishes. For the simplified model so obtained, I examine the 
one-phonon angle-resolved desorption flux for physisorbed atoms at zero surface 
coverage in the Golden Rule approximation. I do not think that it is possible to 
improve on the atom-phonon coupling used here without losing the phonon 
structure of the substrate as a distinct factor determining the angular dependence. 

To avoid possible misunderstanding, I emphasize that I do not present a new 
theory of thermal desorption. What I do is to show how a not unreasonable 
simplification of the atom-phonon coupling directs attention to the r6le of  the 
substrate phonons in determining the angular dependence of the one-phonon 
mechanism, and moreover, enables this angular dependence to be calculated 
rather easily for some limiting cases. I do not consider multi-phonon processes; 
for a light atom on a heavy substrate, provided single phonons with energy greater 
than the desorption energy exist, the one-phonon process dominates the desorp- 
tion rate. Since Debye energies rarely exceed 50 meV, the above energy require- 
ment means essentially that only physisorption systems are covered. 

2. Desorption from delocalized states 

The essential features of  this first model are: 

a) The static gas-solid interaction potential describes a flat surface with a hard 
wall repulsion. 
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b) The movement  of  a surface atom of the substrate due to lattice vibrations 
causes a sma l l a rea  of  the hard wall round the surface atom to move with it. 

c) The initial state of  the system is drawn from the canonical ensemble at 
temperature T. 

d) Umklapp processes are neglected. 

In addition, and simply to obtain explicit results in some limiting cases, matrix 
elements of  the inelastic potential causing desorption will be calculated here with 
WKB wavefunctions. 

The Hamiltonian is 

~ :  ~A + ~L + V(x, UL), (t) 

where Y{A and ~{L are the kinetic energy operators for the gas atom A, and the 
substrate lattice L. x = (X, z) is the gas atom's  position (X lies in the surface, 
and z is perpendicular to it), UL is a many-dimensional vector specifying the 
displacements ut of  all the lattice atoms from their equilibrium positions; V(x, UL) 
is the potential energy of the system. 

We separate the gas-solid potential V(x,O) for the rigid lattice, and introduce 
the Hamiltonian ~rigid for the gas atom on this static potential, 

~rigid = ~ A +  V(X, O) (2) 

and then write Eq. (1) in the form 

~ =  ~rigid "q- ~ph -I- r~A ph, (3) 

where ~ph is the Hamiltonian for the phonons of the (semi-infinite) substrate, 
and gA_ph(X, UL) describes the gas a tom-phonon coupling. I f  we expand VA-ph 
in a Taylor series in UL, and retain only the linear term 

VA-ph = E U," • ,V(x ,  O) (4) 

we obtain the linear coupling model with a 50-year history [3]. 

The normal modes of a semi-infinite solid with one atom per unit cell have surface 
wavevector O, perpendicular  wavevector qz (which will be complex for surface 
modes if any exist), and mode index cr = 1, 3. I f  we apply periodic boundary 
conditions over N meshes of the surface net, then for N~ layers of  the crystal, 
the displacement of  a lattice atom at ! = (L, lz) in a normal mode is 

u,~(q) = (NNzM) 1/2 e~(Iz, q) exp (iQ. L), 

where M is the mass of  a lattice atom, q = (Q, qz), and e~ is the unit polarization 
vector which is an eigenvector of the dynamical matrix. In a semi-infinite solid, 
e~ depends on lz in general, and on q, not just on q~. 

An arbitrary vibration is a linear superposition of normal modes with amplitudes 
B~(q), which go over to phonon operators in quantum theory; 

jBo~(q ) = ( itl/2~-~q~r ) l /2[~.(q) -b ~+(q)], 

where f/q~ is the normal mode frequency, and ~+(q) and ~ ( q )  are the usual 
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phonon creation and destruction operators. Thus Eq. (4) becomes 

VA-ph = Z gq~(X)[#~(q) +~+(q)] (5) 
qo- 

g~ = ( h/2NNzMl)q=)l/2 E e~(l, q) . VtV(x, 0) exp ( iQ.  L). (6) 
I 

If  only the movement of  atoms in the surface layer I~ = 0 changes the potential 
V(x, UL), and if further, parallel forces on the gas atom vanish (see below), Eq. 
(6) reduces to 

gq~ = (h/2NNzM~q~) 1/2 e~(Iz, q)E (OV(x, O)/Ozr) exp (iQ. L), (7) 
L 

where e~ is the z-component  of e~, and zL is the z-displacement of  the surface 
lattice atom at (L, 0). 

The Golden Rule transition rate from an initial state I1) to a final state IF), both 
eigenstates of  ~rig id  -~- ~ p h ,  is 

R(F~ I) = (2~-/h)l(FI VA-p, II>I~(EF -- E,). (8) 

]I) and IF) are product  states li)In,) and ]jr) Inf) where li) and If) are gas atom 
states on V(x, 0), and In,) and Inf) specify the phonon states of  the substrate. 

Taking account of the translational symmetries of the initial and final state gas 
atom wavefunctions as specified by their parallel wavevectors K,. and Kf, the 
matrix element in Eq. (8) has the form 

(FI VA-pnl/)= E cqr Wozli)  N2g~;,+o,~;z 6,e+lqr (9) 
qo- 

where 

cqr = ( h/2NN~Mflqr e~r q). (10) 

Here 0 V/Oz is the derivative of V(x, Ur) with respect to the z-displacement of 
an arbitrary surface atom evaluated at UL = 0, and the tilde on the first Kronecker 
6 means that K~ + Q = Ks to within a reciprocal vector of the surface net. The 
second Kronecker 6 comes of course from the linear coupling to the phonons 
as specified in Eq. (5). 

The initial state being drawn from the canonical ensemble at temperature T, the 
desorption rate to If) requires Eq. (8) to be summed on the initial states II) with 
the usual Boltzmann weight factors. Furthermore, we sum on the phonon com- 
ponent of  If) which is not measured in thermal desorption, to get Ry, the rate 
to the gas atom final state If) irrespective of the final phonon state of  the substrate. 
We find 

Rf = (2" r rN4/hqA)  E ~ exp [ -- ( hflqr + e,)/ kT]] cq=12l(f[0 V/Oz] i)l 2 
i qo- 

x a ( ~ +  Vo- ~ , -  h~)g,,,+o,,,~. (11) 

Here qA(T) is the adatom partition function, ey is the energy of the gas atom 
state If) measured from the vacuum level, Vo is the depth of the lowest bound 
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state of  ~ r i g i d  below the vacuum level, and e~ is the energy of  a b o u n d  state 
referred to the lowest b o u n d  state as zero. For  a flat static potential  where 
V(x, O)= V(z, 0), the wavefunct ions  and energies are 

{ x l i ) = A  ~/2exp(iK~.X)i(z) ,  e i=ei+h2K~/2rn 
(12) 

(x l f )  = A -1/2 exp (iK s. X ) f ( z ) ,  e s -- es+ h2K~/2rn, 

where A is the normal izat ion area for the "parallel  wavefunct ions" ,  and m is 
the mass o f  the gas atom. Since i = (K~, i), we can perform the sum on Ki in Eq. 
(11) to get 

Rf = (27 rN4 /hqA)  ~ ~ exp [ -- ( hl)q~ + e~ + h 2lKf - O12/2m) /kT]  
i qo- 

X ICqo.[ 2 I(f, KTIOV/OzIKf- Q, i)]2~(ef + hZK~/2m 

+ Vo- e~- h2]Ky - Q12/2m - hf~q~) + umklapp  terms. (13) 

Umklapp  terms have K i +  Q = Ky+ G where G is a non-null  vector  in t h e  
reciprocal lattice of  the surface net. Such terms will not  be retained henceforth.  

Next  I suppose  that each vibrating surface a tom simply causes an area S of  the 
hard repulsive wall round  it to move with it. Then 

( f  KfIO V/Oz[Ki, i ) = a - ' ( f l o V / o z l i ) s ( Q )  (14) 

s( Q) = s(K~ - Kj) = fs  dX exp (iQ. X)  

= s(Q) for a circular area S. (15) 

Furthermore,  because for a hard wall at z = 0 

OV/Oz=Lim V6(z), X i n S  
V ~  

= 0, otherwise 

we have that  

<flaV/azli) = lira V~by, (0)qS,(0)  = 2(a~b)-'/z[e~ey(ey.+ Vo)] '/4 
V---~ o:3 

(16) 

the last form by using W K B  wavefunct ions for the one-dimensional  states 1i) and 
If). Also in Eq. (16), b is the quantizat ion length for the u n b o u n d  gas a tom state 
If), and ai is the length o f  the classical trajectory for the initial state l i). 
Consequent ly  

R s = (27rN4/hqm ) ~ ~. exp [-(hlIq,~ + e~ + h2 lKf -  Ql2/2m)/kT] 
i qcr 

x Icq~s(Q)/Al2(4/aib)[~ei(er+ Vo)]l/2~(es+ h2K~/2m 

+ Vo-  e , -  h2 lKf -  Ql2/2m - h ~ q c r ) .  (17) 

The angle- and energy-resolved desorpt ion flux d21V/dw des (the flux into unit 
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solid angle do) at angle 0y to the surface normal with energy between ey and 
es + des) is 

a:N/ato clef = [~ 2 ~ f  Rf (18) 

and the desorption rate d_N/dw into unit solid angle at angle Oy to the surface 
normal (there is no dependence on the azimuth for the present model) is 

I; dN/dw = [~Vm/(2"rrh) 3] def 2~/2-~f Ry. (19) 

Using Eq. (17) for Ry, the angular dependences in Eqs. (18) and (19) are evidently 
determined in a complicated way by the detailed structure of the phonon modes 
of  the substrate, and in general we can only proceed by making a computation 
for a particular system. This is the usual situation in quantum chemistry. However, 
I have not yet finished writing the programs, so here I will make a simplifying 
assumption which enables us to get to grips with some of  the chemical physics 
of the phenomenon. It is the presence of  Q along with ~q~ in the ~-function in 
Eq. (17) which is the barrier to progress without a large-scale computation. One 
way to proceed is to retain only the term with Q = 0  in Eq. (17) 1. But it is 
well-known that reducing the number of terms on the right in Eq. (17) in this 
way makes R I vanishingly small compared with experimental desorption rates. 
It has therefore become common to retain the sum on all q on the right in Eq. 
(17) although setting Q = 0 in the summand. I shall follow this practice here, but 
to put it on a proper footing, I note that it is a valid procedure if Ks >> Q. Now 
the maximum value of Q is roughly ~r/d where d is the size of the surface mesh. 
For 2 d = 10 A.U., Qmax=0.3 A.U. Since hKs=~-esm sin 0s, we cannot have 
K s >> Q for desorption exactly normal to the surface, but for 0 s > 5 degrees for 
example, we need esm >> 4.5. For argon (m = 8 x 104) this means e s >> 1.4 meV, 
which is not an impossible requirement. 

Setting Q =0  in Eq. (17), and defining 

ha~ = ~f+ Vo-~i (20) 
we see the te rm 

h - 1 2  ~, Icq~l 2 exp ( - h a , ~ / k r ) a ( ~  -a ,~) ,  
o- q 

which is easily reduced to 

( 2 NNzM g~) -1 exp ( -  h f ~ /  k T)pz( g~), 

where 

p z ( n )  =52 2 [ez..(O, q)126(,0,- 120..) (21) 
o- q 

is a projection on a surface atom of the phonon density of states. Now Eq. (17) 
becomes 

Rf = (TrN/hNzMqA)(NS/A) 2 exp [ - ( e y +  Vo)/kT] 

x ~ (4/aib)[e2ey(ef+ Vo)]ll2[pz(~'~fi)/~'~fi]. (22) 
i 

i By further making S equal to the area of the surface mesh, this gives the "vibrating hard wall" 
model. I shall not consider this model here 
z Atomic units are used. 1 A.U. of length = 0.0529 nm 
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Consequently, for atoms desorbed with high components of  velocity perpen- 
dicular to the surface (ey >> Vo, ey = e s cos z 0y), the angular dependence is deter- 
mined by p~; 

Rs~C p~(~s cos 2 0#~) (23) 

This simple prediction should be tested; Pz can be computed from the definition 
(21) for ball and spring models. In the meantime, interesting results are obtained 
if we assume that desorption is driven by surface phonons with 

p~(O) ac f~ (0< f~ < f~m~) 
= 0 otherwise. (24) 

Then, using Eq. (22), the angular dependence of the desorption flux from a single 
state l i) is given by 

? d N  / d~o oc d Y ~  [ Y cos 2 0z( Y cos 2 0 s 

+ Vo/hamax)] 1/2 exp ( -  hamax Y~ kT).  (25) 

Here 

Y =  ~sl h ~ x  
Ym = (h~'~max- Vo jr- E'i)/Vo c0s2 Of = c/cos  2 Of. (26) 

I f  we put Y~ Y,, = z so that Y cos 2 0 s = cz, then 

L dl~/d~o oc y3/2 dT.[cz2(cz+ Vo/ham~x)] 1/2 exp ( - a z )  

(27) 
a = chf~m~x/kT cos 2 0 s. 

I f  a is large, small values of  z contribute most to the integral, and in this case 
the upper  integration limit can be pushed to infinity. Then if c, and Vo/hf~max 
are of  order of  magnitude unity, the integrand in Eq. (27) can be taken as cl/2z 
exp ( - a z ) .  In this case 

L o d N / d w o c ( y 3 c )  1/2 d z z  exp ( - a z ) = ( y 3 c / a 4 ) l / 2 o C c o s  0 s (28) 

and remarkably, we have obtained the equilibrium-theory result [15] for a highly 
non-equilibrium situation (a single adatom desorbing into a vacuum). I note that 
c -  1, and Vo/hf~max- 1 are expected for physisorption (hf~max-30 meV, Vo-  
10 meV for example), so to have a >> 1 requires from Eq. (27) that ~ m a x  >)" kr ,  
i.e., low-temperature desorption. Thus the conditions for obtaining the equili- 
brium-theory result are rather special (recall too that the condition Ks>> Q 
required for Eq. (22) cannot be met if the expectation energy of the desorbed 
atom is too low), and in general Eq. (27) does not give the cos 0 s angular 
dependence, but a distribution with maximum flux away from the surface normal 
[16]. 

3. Desorption from localized states 

This case was treated in some detail by Bendow and Ying [4], Gortel et al. [6], 
and Goldys et al. [10]. I will adapt  the model of Sect. 2 to the new situation in 
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the simplest way. It is to be expected on general physical grounds that the parallel 
momentum distribution in the initial state will be a factor in determining the 
angular dependence of  the desorption flux, and therefore that desorption with 
Ky = 0, i.e., desorption normal  to the surface, will now be favoured. 

Let the initial state be localized on the surface atom at L = 0, then in place of  
Eq. (9) I will use 

(FI VA-ph[ I )  = Y. Cq~(f]o V/OZo] i)an s + 1 q~, n,, (29) 
qo- 

where z0 is the z-displacement of  the lattice atom at L = 0. This assumes again 
that lattice vibrations do not exert parallel forces on the gas atom, although this 
cannot be true now that the static potential V(x, O) has deep wells to localize the 
adatom. In place of  Eq. (11) we now have 

R s = (27r/hqA) • Z exp [ -- (h~q~ + el)/kT]lcq~[ 2 
i qo- 

x I(fla V/azoli)12a(es + Vo- e , - / m . ~ ) .  (30) 

I assume an initial state 

<xli) = 4~(x) i (z) ,  (31) 

where ~h(X) is for example,  a 2-dimensional Gaussian. The final state should 
also be an eigenstate of  the static potential, orthogonal to the initial state. But 
to make progress I follow Bendow and Ying [4] and use the "flat potential" form 
of Eq. (12) again. Thus only i(z) a n d f ( z )  are eigenfunctions of  the same potential, 
but as these are the functions in the matrix element in Eq. (29), it is clear that 
not too much is being sacrificed by making this approximation [4]. The matrix 
element in Eq. (29) is now 

{flO WOzoli) = A-1/2(f[O V/Ozoli)s(Kf), (32) 

where 

s(Ks) = fs dX exp ( - iK  s. X)4)(X) (33) 

and Eq. (30) becomes 

Rf = (~Is(Ks)I2/ NNzMAqA) exp [ - ( e s +  Vo)/kT] 

x 2 I(fl 0 V/OzoIi)I2[pz(f~)/~Jq] �9 (34) 
i 

In general the factor [s(Ks)l 2 contributes to the angular dependence of  the 
desorption flux, but if  S is small so that SK}<< 1 for all important  K s, then 
s(Ks) - s(0), and does not contribute to the angular dependence. In this case the 
angle- and energy-dependence of  R s is the same as in Eq. (22) for a delocalized 
initial state (after using WKB wavefunctions for i(z) and f (z)  of course). Once 
again therefore we can obtain the equilibrium-theory result if Eq. (24) holds. On 
the other hand, if 05(X) is well localized, the factor IS(/~S)l 2, which now approaches 
the parallel momentum distribution in &(X), is not constant. To explore this 
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case further, assume that S is a circular area, and that (b(X) is the Gaussian 
(2a/zr) 1/2 exp ( -aX2) .  Then for large a 

s(Ks) = s(Ks) = (2~r/a) 1/2 exp ( - K } / 4 a )  

and the effect of  Is(Ki)[ 2 is to redefine a in Eq. (27) as 

a = (Cfii)m,x/kT cos 2 0i)[1 + (mkT/h2a)  sin 2 0s]. 

Thus, the angular dependence for large a is changed from cos 0 s to 

dN/do) oc co s 0s/[ 1 + ( m k T / h  2 a ) sin 2 0i] 2. 

As anticipated, the cos 0 I distribution is modified by concentrating the flux more 
along the surface normal 0 s = 0. 

A calculation for mkT/f i2a = 2 shows a result for dN/dto qualitatively similar 
to Ying and Bendow's calculations for Ne on Xe-covered graphite with dl~/do) 
sharply peaked in the normal direction following approximately cos 6 0 s. Similarly 
for R I itself 

Ricc{ Y cos 2 0s[ Y cos Of+ ( Vo/~~max)]} 1/2 

• exp { -  Y[1 + (mkT/h2a)  sin 2 Of]} 

there is qualitative agreement with Ying and Bendow [4]; there is a peak in Rf 
which moves to lower energy, and sharpens with increasing Of. It is possible 
therefore, that the simple model presented here, which is very easy to use, could 
be useful for correlating and interpreting experimental data. In the meantime, it 
could be evaluated further by applying it to the theoretical model treated in detail 
by Goldys et al. [10] (semi-infinite continuum phonons driving desorption from 
the single bound state of  a localized separable potential) for which all formulae 
for the exact Golden Rule angular dependence are published. 

4. Concluding remarks 

The simple microscopic model of the gas a tom-phonon coupling used here enables 
angle-resolved desorption spectra to be calculated rather easily for some limiting 
cases, but more importantly, it directs attention to the details of  the substrate 
phonons which contribute to the angular dependence of the one-phonon mechan- 
ism, and moreover,  allows these details to be calculated independently as realisti- 
cally as one wishes. This contrasts with previous work where the phonon structure 
of  the substrate is simplified in favour of a more accurate calculation of the 
desorption rate due to these simplified phonons. For the model used here, there 
is in R s, a complete separation into a phonon factor [the projected density of 
states p~(~)], and factors determined by the motion of the gas atom in the static 
atom-solid potential, and such a separation is a useful feature if a theory is to 
be used to Correlate or interpret experimental  data. I intend to investigate this 
aspect of  the model further, not necessarily with WKB wavefunctions which have 
been used here simply to get explicit angular dependences for some limiting 
cases. With a more accurate model of the gas a tom-phonon coupling where for 
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example e~(0, q) �9 V0 V(x, O) replaces ezo-(0, q)O V/Ozo in the matrix element, and 
parallel and perpendicular motions of the gas atom are not independent, the 
details of the subsirate phonons,  and those of the gas atom states in the static 
gas-solid potential become interwoven. In these circumstances, the calculation 
of the angular dependence of the desorption flux is a much larger computational 
task than for the model used here, and one would want to be sure that the 
gas-solid potential, and its gradient with respect to the displacement of  a lattice 
atom, could be computed reliably for the chosen gas/solid system before embark- 
ing on it. Consequently, it is important to know more about the content of the 
simple models presented here, and to this end, I have begun to compute pz(~2) 
for ( l l l ) N i  and ( l l l )P t .  

Finally, it should be emphasized that the theory presented here refers to the 
angle-resolved flux of structureless adparticles desorbing at low surface coverage 
by the one-phonon mechanism in the Golden Rule approximation. Relaxing any 
of these four restrictions leads to significant complications. 

Acknowledgement. A referee cites "Physisorption Kinetics", by H. J. Kreuzer and Z. W. Gortel, 
Springer-Verlag Berlin Heidelberg (1986) for a review of thermal desorption. At the time of writing 
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